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Abstract— Robotics collaborative drawing involves the inter-
action between humans and robots to create of visual art using
a variety of tools and materials, serving various functions such
as communication, narration, and emotional representation. A
creative technique within the human natural drawing process
is known as inpainting, which involves reconstructing or editing
elements in a drawing. This paper introduces PICaSo (Physical
Inpainting on Canvas Solution), a robotic drawing system
that enables multiple users to collaboratively create artwork
on a canvas by integrating the inpainting process. PICaSo
utilizes a fine-tuned text-to-image model to interpret natural
language prompts into artistic renderings on canvas. Users
guide the process by simple descriptive text and specifying
desired drawing placement, empowering the robotic arm to au-
tonomously translate these instructions into physical artworks.
Our system’s innovation lies in its effective translation of digital
inpainting processes into physical actions. By leveraging our
erasing capability that enables selective removal of specific parts
on the canvas without impacting neighboring areas, facilitating
the creation of sequential drawings. This paper comprehen-
sively outlines the capabilities of the proposed system, explores
potential applications across various domains, and addresses
technical challenges encountered during its development.
Project website: shadynasrat.github.io/PICaSo

I. INTRODUCTION

Recent advancements in text-to-image technologies have
led to a significant increase in digital content production.
However, the integration of these technologies into creating
art with robots is still at an early stage, primarily due to the
substantial disparity between digital and real-world settings.
One notable advancement is the inpainting process, where
text-to-image models produce or reinterpret sections of an
image based on textual input. PICaSo introduces a robotic
system designed to support the inpainting process on a
physical canvas, enabling multiple users to cooperate and
improve their creative ideas using natural language shown
in Fig. 1. This unique approach brings together human cre-
ativity and technological precision in visual art, allowing for
collaborative brainstorming by adding or refining elements of
the canvas. The potential benefits of a collaborative assistant
in therapeutic art are evident [1]–[3], as it enables group
drawing sessions that can enhance mental health and overall
well-being. PICaSo’s collaborative inpainting process serves
as a supportive partner, offering guidance throughout the
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Fig. 1. PICaSo Inpainting Process: Illustration demonstrate the collabo-
rative process of drawing by multiple users. The process commences with a
user initiating the canvas with an idea, followed by other participants making
various edits on the physical canvas. This was made possible through our
PICaSo inpainting technique, enabling the robot arm to selectively remove
and redraw necessary parts without impacting the entire canvas.

artistic process involving multiple users, making it partic-
ularly beneficial for those who may have physical or skill-
related limitations with drawing.

We prepared for the inpainting process by selecting the
appropriate tools, such as a marker and an eraser, and
using a whiteboard as our canvas. To enhance efficiency, we
also designed a multi-gripper capable of holding markers,
erasers, and a camera for added convenience. Our waypoint
generation uses the pixel-to-pixel line extraction algorithm
introduced in [4]. This algorithm efficiently extracts points
and lines from an image while maintaining quality and
reducing processing time. Although drawing proved straight-
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Fig. 2. System Overview: The diagram illustrates the step-by-step procedure, beginning with user interface input for mask and text prompt. Then, a
generative drawing module creates a new image, followed by the generation of waypoints to direct the robotic arm in the drawing process. The end outcome
is presented as the robotic arm transfers the generated drawing onto the canvas.

forward, the challenge arose in clearing process. Prior to our
method’s development, clearing was an unexplored territory,
with no established techniques. Consequently, we innovated
a new method to trace back drawn waypoints within a se-
lected mask, enabling their removal from the canvas without
impacting the surrounding artwork.

Since our waypoint generation algorithm is based on a
morphological transformation for image skeletonization, it
required the input image to adhere to a specific style that
excludes bold lines, shading, or colors. The pre-trained text-
to-image model faced challenges in creating images with this
specific style, often resulting in a generic random cartoon
styles where regular prompt tuning couldn’t yielding the
desired outcome style. To address this issue the style gap
between the text-to-image style and the pixel-to-pixel line
extraction algorithm’s desired style needs to be minimized.
This requires learning a new style that is better suited for
precise drawing and inpainting.

To reduce the style gap between generated images and
the line extraction algorithm, we propose a fine-tuned model,
trained on a style in which it is efficient to extract lines from.
First we collected our dataset from cartoon images, which
were characterized by uniform black thin lines devoid of col-
ors and shading. Both SDXL1.0 [5] and SDXL1.0-inpainting-
0.1 models were fine-tuned on this dataset to understand the
unique style and features of these images, enabling more
accurate line extraction. In order to successfully complete

the inpainting process, we selected the suitable tools for the
task. Our chosen canvas was a whiteboard, and we utilized
a marker as well as an eraser. To optimize our use of
these tools, we developed a multi-gripper capable of holding
markers, eraser and a camera for added convenience during
the process.

We have outlined our primary contributions by introducing
physical inpainting, a novel form of canvas manipulation
necessary for collaborative drawing tasks involving humans
and robots. We introduced clearing algorithm allowing edit-
ing canvas. Our system is designed to be scalable, en-
abling multiple users to work together on a single canvas.
Additionally, we have presented a comprehensive approach
to bridging the gap between pre-trained models and line
extraction algorithms. Both the hardware and software code
for PICaSo are available as open-source resources.

II. RELATED WORK

A. Drawing Tools
Previous research papers addressing drawing robotics

tasks have primarily focused on aspects such as trajectory
planning, stroke generation, and optimization techniques to
improve drawing accuracy, documented in [6]–[16]. These
techniques include the utilization of various tools such as
pens [17], pencils [9-13-15-16], markers [10], paint brushes
[8-18] and spray paint [19]. However, a notable gap in these
approaches has been the absence of a dedicated clearing pro-
cess, which is crucial for facilitating the inpainting process.



The ability to clear and redraw areas enables the correction
of errors and the refinement of details in the artwork. As a
result, PICaSo stands out as the first system to address this
by introducing efforts in the area of clearing processes.

B. Generative AI-Driven Drawing

Recent progress has showcased the potential of AI-based
solutions in this area. In a study by [20], a generative adver-
sarial network and a collaborative robotic arm worked with
a 5-year-old child to create drawings on canvas. Moreover,
various research works have introduced neuroadaptive learn-
ing algorithms for effective control in constrained nonlinear
systems and robotic painting setups such as such as [12-
21]–[26]. For instance, Tianying et al. [10] utilized GAN-
based style transfer to transform facial images into simpli-
fied cartoon representations, while S. Nasrat [6] employed
similar techniques to generate high-quality portrait drawings
and Gao et al. [13] employed GAN-based style transfer to
minimize the number of strokes needed for sketching art-
works. Building upon these developments is CoFRIDA [27],
which utilizes an adapted Instruct-Pix2Pix model to narrow
down the semantic gap between simulated and real-world
drawing allowing collaborative drawings between humans
and robots. However, with these developments, there is still
potential for enhancement in ensuring smooth collaboration
and improving the organic nature of the drawing process.
Our proposed system utilizes Natural Language Processing
to simplify collaboration in drawings. Additionally, other
methods lack scalability to facilitate multiple users working
together on a shared canvas, which is a fundamental aspect
of our system’s design.

III. METHOD

The System Architecture begins with user input through
a simple interface as shown in Fig. 2, allowing for the
input of both masks and text prompts. Following this, the
generative drawing module generates a new image within
the specified masked area. The waypoint generation module
comes into play, creating drawing and clearing waypoints.
Finally, the waypoint data is transmitted to the robotic arm
for the drawing process on the canvas.

A. Generative Drawing Module

The primary aim of this module is to produce visuals
for text-to-drawing and inpainting tasks, in a style that
aligns well with the requirements of the waypoint generation
algorithm.

1) Text-To-Drawing: Before inpainting, PICaSo needs to
be capable of generating and drawing complete images from
text. To achieve this, we employed SDXL1.0, a pre-trained
model for text-to-image generation which builds on earlier
Stable Diffusion models.

2) Inpainting: For the process of inpainting, we made use
of SDXL-1.0-inpainting-0.1 - an enhanced inpainting model
initialized with the weights from SDXL1.0 and designed to
continue masked images effectively.

The waypoint generation required style involves excluding
colored, bold lines, or shaded regions. To accomplish this, we

curated a dataset comprising 40 cartoon images characterized
by uniform thin black lines without color or shading – a
stylistic prerequisite for the efficient operation of the way-
point algorithm. These images were obtained from cartoons
in which colors and shadings were manually eliminated and
textual annotations were added by hand. When working with
pre-trained models, instead of training all network parameters
totaling 6.6 billion in each model and to optimize resource
usage and time efficiency, we employed LoRA [28] (Low
Rank Adaptation) training technique by freezing base model
and only training a subset of parameters with a network
rank (dimension) of 128. The training process took four
hours on a NVIDIA RTX 3090 graphic card. Additionally,
we conducted comparative analysis among generated images
produced from different models including our own in order
evaluate their performance as shown in Fig. 3.

B. Waypoints Generation

We utilized the approach described by S. Nasrat et al.
[4]. Initially, a morphological transformation is applied to
simplify the sketch, smoothing pixel edges and removing
isolated pixels. Subsequently, an efficient pixel-to-pixel al-
gorithm extracts lines from the sketch, preserving important
details while optimizing processing time. Line clustering
reduces the number of lines by merging closely located ones
to ensure precision and guide the robotic arm along the
desired path information. In this study, a scaling algorithm
was developed to convert pixel dimensions of a canvas
image into metric sizes in Cartesian coordinates. The process
involves converting each individual pixel into a meter-based
Cartesian system using the pixel’s x and y coordinates shown
in Eq. 1. This allows users to easily adapt to changes in pixel
or physical canvas sizes according to their preferences. The
vectors C and P represent the position on the canvas and
the pixel position in the image, with C0 and Cf as start and
end points on the canvas, while P0 and Pf correspond to
start and end points of the image.

C = C0 + ((Cf −C0)/(Pf − P0)) ∗ (P − P0) (1)

Both drawing and clearing uses an interpolation movement
approach through the generated waypoints showing visually
appealing drawings. Utilizing the scaling algorithm with the
interpolation movement made it was possible to generalize
our system and be able to be used on different robotics arms
as we tested on UR5 and RB-180 documented at Sec. IV.

C. Clearing Algorithm

During the clearing phase, each waypoint is revisited
on the current canvas. Utilizing the user-defined mask, it
precisely discerns which waypoints require erasure, facili-
tating the preparation for subsequent creative iterations. The
process of tracing back waypoints falling within the mask is
represented by Eq. 2, where Werase, Wcurrent, and Mmask

respectively signify the set of waypoints to erase, the current
waypoints on the canvas, and the user-defined mask area.



Fig. 3. Text-To-Drawing Comparison: This illustration shows a com-
parison between multiple text-to-drawings results using different models.
Image size: 1024x512, Canvas size: 600x300 mm, Prompts: ”angry girl
with a laser gun”, and ”a close up shot of a cat face”

The updated waypoints Wupdated after performing the erase
waypoints Werase onto the canvas is represented by Eq. 3:

Werase = {C|C ∈ (Wcurrent ∩Mmask)} (2)

Wupdated = Wcurrent −Werase (3)

D. Gripper Design

Enabling a seamless transition between the different func-
tionalities was essential to this system, to achieve this we
implemented a spring loaded multi-tool gripper mechanism.

Fig. 4. Human Evaluation Study: A survey involving selecting from
most appealing image according to description out of four images generated
by different models. The survey consists of the following sets: text-to-
drawing images, text-to-drawing drawings, inpainting images and inpainting
drawings.

This gripper was designed to facilitate quick switches be-
tween the marker, eraser and camera modes offering a flexi-
ble and responsive approach to the process. Each tool in the
gripper was configured with a 45-degree offset from the Tool
Center Point (TCP) origin angle, allowing versatility and
reach while maintaining precise control over the execution.
Additionally, we included a spring mechanism in the marker
tool to maintain consistent lines.

IV. EXPERIMENTS

A. Baselines Comparison

We examine how the fine-tuning procedure affects the
generation of consistent waypoints in both the SDXL1.0
and SDXL1.0-inpainting models by contrasting them with
alternative models in PICaSo’s Generative Drawing module,
encompassing text-to-drawing and inpainting tasks.

B. Multiple User Inpainting

We test PICaSo’s inpainting scalability in multiple it-
erations of human-robot interactions, by allowing multiple
participants to introduce new creative element onto the can-
vas, such as adding new components or modifying existing
ones. and giving the freedom to change drawing canvas
sizes to testing our scaling algorithm. Additionally we got
participants satisfaction feedback while using the inpainting
process.

C. Evaluation

1) Text-To-Drawing: We utilized CLIPScore [29] to
gauge the similarity between images and prompts using pre-
trained image-text encoders. Other benchmarks are incorpo-
rated such as BLIPScore [30], Aesthetics [31] and ImageRe-
ward [32] into our analysis. Additionally, we calculated the
loss in the semantic meaning △id In Eq. 4. We measure
the △id by calculating the absolute mean-error between the
CLIPScore values of both the generated image Iimg and its
corresponding drawing Idraw.. Due to potential bias related
to CLIPScore, human evaluation was also conducted.



TABLE I
TEXT-TO-DRAW BENCHMARK SCORES COMPUTED ON BOTH GENERATED IMAGES AND DRAWINGS RESULT

CLIPSCORE↑

DRAW | IMAGE

BLIPSCORE↑

DRAW | IMAGE

AESTHETICS↑

DRAW | IMAGE

IMAGEREWARD↑

DRAW | IMAGE
△id↓

HUMAN EVAL.↑

DRAW | IMAGE

CoFRIDA 0.6240 | ——- 0.1920 | ——- – | – – | – – – | –
PICaSo (SD) 0.6378 | 0.6595 0.3336 | 0.3227 4.0551 | 4.8051 -2.2119 | -2.2363 0.0216 0.087 | 0.109
PICaSo (SD2) 0.6055 | 0.6277 0.3622 | 0.3242 4.0997 | 4.9585 -2.2330 | -2.2187 0.0221 0.168 | 0.233
PICaSo (SDXL1.0) 0.6891 | 0.6619 0.3354 | 0.3255 4.2808 | 5.0909 -2.1630 | -2.1433 0.0272 0.252 | 0.233

PICaSo (fine-tuned) 0.7023 | 0.6942 0.3389 | 0.3218 4.3448 | 5.0425 -2.1575 | -2.1272 0.0080 0.491 | 0.425

TABLE II
INPAINTING BENCHMARK SCORES COMPUTED ON BOTH GENERATED IMAGES AND DRAWINGS RESULT

CLIPSCORE↑

DRAW | IMAGE

BLIPSCORE↑

DRAW | IMAGE

AESTHETICS↑

DRAW | IMAGE

IMAGEREWARD↑

DRAW | IMAGE
△id↓

HUMAN EVAL.↑

DRAW | IMAGE

PICaSo (SD-inpaint) 0.6943 | 0.6908 0.5692 | 0.5490 4.4933 | 4.9165 0.3035 | 0.6667 0.0035 0.124 | 0.082
PICaSo (SD2-inpaint) 0.6582 | 0.6994 0.5606 | 0.5415 4.6311 | 4.8423 0.5580 | 0.5592 0.0412 0.202 | 0.168
PICaSo (SDXL1.0-inpaint) 0.6689 | 0.7064 0.5271 | 0.5471 4.6290 | 4.9966 -0.2514 | 0.9001 0.0374 0.216 | 0.213

PICaSo (fine-tuned) 0.7275 | 0.7298 0.5763 | 0.5712 4.7390 | 4.8771 0.6149 | 1.3088 0.0022 0.458 | 0.537

△id = 1/n

n∑
i=1

|CLIP (Idrawi)− CLIP (Iimgi)| (4)

difference
2) Inpainting: We evaluated the data collected from the

multi-user inpainting sessions we conducted, evaluation is
done using CLIPScore and other benchmarks between in-
painting models.

V. RESULTS

A. Text-To-Drawing

In order to assess the effectiveness of our refined approach
in the text-to-drawings method, we conducted a comparison
of image and drawing outcomes between runwayML(SD)
[33], stable-diffusion-2(SD2) [34] and SDXL1.0 as base
models, including our fine-tuned model. Our investigation
focused on examining the impact of our fine-tuned model’s
ability in text-to-drawing transformation. We produced 50
pairs of images and drawings pairs per model while main-
taining consistent settings for prompt, size, and generation
seed, where some of the results are shown in Fig 3. CLIP-
Score, BLIPScore, Aesthetics and ImageReward measures
are reported in Table I. PICaSo (fine-tuned) demonstrates
the highest scores followed by the SDXL1.0 a base model,
this was expected given that our fine-tuned model is based
on SDXL1.0. in terms of the absolute mean-error (△id)
between images and drawings CLIPScore, our fine-tuned
model outperforms the baselines highlighting the efficiency
in producing the required style for efficient waypoint gener-
ation resulting in visually appealing drawings.

We adequately evaluate the dataset through human evalu-
ation, as utilizing AI-based evaluation may lead to biased
results, a survey was carried out as depicted in Fig. 4.
20 distinct participants were involved and presented with

a language description along with four images generated
by different base models as well as our fine-tuned model,
resulting in a total of 100 drawing-image generated pairs.
Participants were instructed to select the most aesthetically
pleasing image and drawing based on the textual descrip-
tion provided. For both images and drawings, the majority
favored the output of our fine-tuned model for its simple yet
descriptive style. The particular preference for our drawings
emphasizes PICaSo’s effectiveness in translating the refined
style onto the canvas while maintaining visually appealing
results.

B. Inpainting

Similarly to the text-to-drawing benchmark, we con-
ducted a comparison and survey to evaluate the inpainting
dataset curated from several multi-user inpainting sessions.
In this comparison we use stable-diffusion-inpainting(SD),
stable-diffusion-2-inpainting(SD2), and SDXL1.0-inpainting
as baseline models along with our fine-tuned inpainting
model. Our dataset consists of 50 image-drawing pairs gen-
erated from each model while maintaining consistent settings
and input masks. Some examples of the dataset are shown
in Fig. 5. The inpainting dataset consists of different tasks
involving removing objects, redrawing character pose and
drawing objects from an empty background. Table II reports
CLIPScore, BLIPScore, Aesthetics, ImageReward and ab-
solute mean-error (△id) measures. PICaSo (fine-tuned) out
performs other models. On the CLIPScore metric the base
model SDXL1.0-inpainting ranks second after our model,
which aligns with expectations as our fine-tuned model is
built upon it. The decrease in absolute mean error (△id)
demonstrates the quality of image translation onto the canvas
using our trained style. In addition, we carried out a survey
using the inpainting dataset under the same conditions as the
text-to-drawing survey. The results of this survey are depicted
in Fig.4.



Fig. 5. Inpainting Comparison. This illustration shows a comparison
between multiple inpainting image-drawing pairs generated using different
models. Image Size: 512x512 pixels, Canvas size: 300x300 mm, Prompts:
”eyes”, ”holding a balloon” and ”a dog”.

C. Inpainting Scalability

To evaluate the performance and collaborative scalabil-
ity of the PICaSo system’s inpainting process in multiple
iterations of human-robot interactions, several multi-user
inpainting sessions were conducted, wherein each participant
contributed new creative element to the canvas, Examples of
these sessions are depicted in Fig. 6. Notably, one session
involved 10 participants, as detailed in Table III. Within
this session, a participant initiated the process by adding a
character which was subsequently edited by others through
the addition of various features such as glasses, a suit,
a smile, a full body, and the transformation of a balloon
into an umbrella etc... . This collective effort resulted in
a single artwork collaboratively crafted by 10 individuals,
utilizing our system to articulate their ideas into a physical
canvas through Natural Language. Based on the participants
feedback PICaSo scores a 86.7% satisfaction rate in using
the system in collaborative inpainting.

VI. DISCUSSION

The exploration of new artistic styles and techniques
stands as a promising avenue for the advancement of the
PICaSo system. Despite the current emphasis on traditional

Fig. 6. Inpainting Results. We showcase PICaSo inpainting outcomes
obtained from several multi-user collaborative sessions. Each session begins
with a unique concept from the participant and their desired canvas
dimensions, leading to a diverse array of drawings on different canvas sizes,
using our scaling algorithm.

artistic forms, numerous unexplored avenues beckon for
exploration. For instance, the mimicking of an artist style
or incorporating drawing techniques as minimalist one-line
drawing, which offer rich potential for experimentation and
innovation within the PICaSo framework. Leveraging the
capability to merge different LoRA adapters further expands
the system’s capacity to generate diverse artistic outputs by
blending various LoRA image styles.

Furthermore, advancements in text-to-image models hold
significant promise for enhancing the capabilities of the
PICaSo system. Future iterations of these models may facil-
itate a more nuanced understanding of images, enabling the
system to interpret and render complex visual concepts with
greater fidelity. This could greatly enrich the system’s ability
to translate intricate textual descriptions into dynamic and
multifaceted artistic compositions on canvas. As such, ongo-
ing research into text-to-image models presents an exciting
opportunity for the continued evolution and enhancement of
the PICaSo system’s creative capabilities.

VII. CONCLUSION

The PICaSo system is a flexible platform that allows
for the exploration and development of the combination of
artificial intelligence, human creativity, and robotics. Our
research into fine-tuning and tool selection has shown how
adaptable and scalable the system is in the process of
robotics inpainting on physical canvas. Additionally, we
have implemented a clearing process to enable multi-user
editing on a single canvas using natural language input.
Pre-trained models are unable to produce the desired style
according to the waypoint algorithm. However, our fine-
tuned models provides an effective style in terms of both



Prompt Mask Clearing Drawing Time

”Rick from rick and morty” Clear: –
Draw: 59 sec

”glasses” Clear: 49 sec
Draw: 26 sec

”A suit” Clear: 65 sec
Draw: 60 sec

”smile” Clear: 3 sec
Draw: 6 sec

”full body” Clear: 25 sec
Draw: 30 sec

”holding balloon” Clear: 28 sec
Draw: 60 sec

”umbrella” Clear: 49 sec
Draw: 109 sec

”space rocket” Clear: –
Draw: 52 sec

”smoke out of the rocket” Clear: 5 sec
Draw: 59 sec

”ghost” Clear: 103 sec
Draw: 17 sec

TABLE III
ILLUSTRATION OF COLLABORATIVE DRAWING EXPERIMENT CONSISTING OF 10 VOLUNTEERS EACH ONE CONTRIBUTING NEW IDEA TO THE CANVAS

USING PICASO COLLABORATIVE INPAINTING METHOD, CANVAS SIZE 600X300 MM



time and quality, as confirmed by both image-text encoders
and human evaluation. Additionally, the innovative method
for clearing canvas sections enabled multiple users to engage
in inpainting sessions, with one notable session involving 10
participants working together to combine their distinct ideas
onto a single canvas. In future work, we aim to explore
the potential of integrating different painting styles into
our robotic system and introducing colors into the system,
allowing users to articulate more complex ideas onto the
canvas.
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